手机小说 > 科幻小说 > 死在火星上 > 对火星轨道变化问题的最后解释

对火星轨道变化问题的最后解释

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑。

那么作者君在此列出一篇相关的参考文献。

以下是文章内容:

Long-termiionsandstabilityofparyorbitsinourSorsystem

Abstract

Wepresenttheresultsofverylong-termnumericaliionsofparyorbitalmotionsover109-yrtime-spansincludingallnineps.Aquispeofournumericaldatashowsthattheparymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevehisverylongtime-span.Acloserlookatthelowest-frequencyosciltionsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialparymotion,especiallythatofMercury.ThebehaviouroftheetricityofMercuryinouriionsisqualitativelysimirtotheresultsfrJacquesLaskar'ssecurperturbationtheory(e.g.emax~0.35over~±4Gyr).However,therearenoapparentsecurincreasesofetricityorinationinanyorbitalelementsoftheps,whichmayberevealedbystillloermnumericaliions.Wehavealsoperformedacoupleoftrialiionsincludingmotionsoftheouterfivepsoverthedurationof±5×1010yr.Theresultindicatesthatthethreemajorresonancesintheune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

1Introdu

1.1Definitionoftheproblem

ThequestionofthestabilityofourSorsystemhasbeeedoverseveralhundredyears,siheeraofon.Theproblemhasattractedmanyfamousmathematisovertheyearsandhaspyedatralroleinthedevelopmentofnon-lineardynamidchaostheory.However,wedonotyethaveadefiniteaothequestionofwhetherourSorsystemisstableornot.Thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusediiontotheproblemofparymotionintheSorsystem.Actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSorsystem.

Amongmanydefinitionsofstability,herettheHilldefinition(Gdman1993):actuallythisisnotadefinitionofstability,butofinstability.Wedefineasystemasbegunstablewhenacloseenteroccurssewhereinthesystem,startingfracertaininitialfiguration(Chambers,Wetherill&Boss1996;Ito&Tanikawa1999).AsystemisdefinedasexperiengacloseenterwhentwobodiesapproaeanotherwithinanareaofthergerHillradius.Otherwisethesystemisdefinedasbeingstable.HenceforwardwestatethatourparysystemisdynamicallystableifnocloseenterhappensduringtheageofourSorsystem,about±5Gyr.Ially,thisdefinitionmayberepcedbyoneinwhioccurrenceofanyorbitalcrossiweeherofapairofpakespce.Thisisbecauseweknowfrexperiehatanorbitalcrossingisverylikelytoleadtoacloseenteriaryandprotoparysystems(Yoshinaga,Kokubo&Makino1999).Ofcoursethisstatementotbesimplyappliedtosystemswithstableorbitalresonancessuchastheune–Plutosystem.

1.2Previousstudiesandaimsofthisresearch

Inadditiontothevaguenessoftheceptofstability,thepsinourSorsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisd1988,1992).Thecauseofthischaoticbehaviourisnowpartlyuoodasbeingaresultofresonanceoverpping(Murray&Holman1999;Lecar,Franklin&Holman2001).However,itwouldrequireiingoveranensembleofparysystemsincludingallninepsforaperiodcseveral10Gyrtothhlyuandthelong-termevolutionofparyorbits,sincechaotiamicalsystemsarecharacterizedbytheirstrongdependeninitialditions.

Frthatpointofview,manyofthepreviouslong-termnumericaliionsincludedonlytheouterfiveps(Sussman&Wisd1988;Kinoshita&Nakai1996).Thisisbecausetheorbitalperiodsoftheouterpsaresomuchlohanthoseoftheinnerfourphatitismucheasiertofollowthesystemfiveniionperiod.Atpresent,thelonumericaliionspublishedinjournalsarethoseofDun&Lissauer(1998).Althoughtheirmaintargetwastheeffectofpost-main-sequenasslossoabilityofparyorbits,theyperformedmanyiionscupto~1011yroftheorbitalmotionsofthefourjovias.TheinitialorbitalelementsandmassesofpsarethesameasthoseofourSorsysteminDun&Lissauer'spaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments.Thisisbecausetheysidertheeffectofpost-main-sequenasslossinthepaper.sequently,theyfoundthatthecrossingtime-scaleofparyorbits,whichbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseoftheSun.WhenthemassoftheSunisclosetoitspresentvalue,thejoviasremainstableover1010yr,orperhapslonger.Dun&Lissaueralsoperformedfoursimirexperimentsontheorbitalmotionofseves(Venustoune),whichcoveraspanof~109yr.Theirexperimentsonthesevesarenotyetcprehensive,butitseemsthattheterrestrialpsalsoremainstableduringtheiionperiod,maintainingalmurosciltions.

Oherhand,inhisaccuratesemi-analyticalsecurperturbationtheory(Laskar1988),Laskarfindsthatrgeandirregurvariationsappearintheetricitiesandinationsoftheterrestrialps,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996).TheresultsofLaskar'ssecurperturbationtheoryshouldbefirmedandiigatedbyfullynumericaliions.

Inthispaperwepresentpreliminaryresultsofsixlong-termnumericaliionsonallnineparyorbits,caspanofseveral109yr,andoftwootheriionscaspanof±5×1010yr.Thetotalepsedtimeforalliionsismorethan5yr,usingseveraldedicatedPdworkstations.Oneofthefualclusionsofourlong-termiionsisthatSorsystemparymotioobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±4Gyr.Actually,inournumericaliionsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseenterhappenduringtheiionperiod,butalsoalltheparyorbitalelementshavebeenfinedinanarrionbothintimeandfrequencydain,thoughparymotionsarestochastic.Sihepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericaliions,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofSorsystemparymotion.Forreaderswhohavemorespecifiddeeperisinournumericalresults,reparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDeunayelementsandangurmentumdeficit,asofoursimpletime–frequenalysisonallofouriions.

Iion2webrieflyexpinourdynamicalmodel,numericalmethodandinitialditionsusedinouriions.Se3isdevotedtoadescriptionofthequickresultsofthenumericaliions.Verylong-termstabilityofSorsystemparymotionisapparentbothiarypositionsandorbitalelements.Aroughestimationofnumericalerrorsisalsogiveion4goesontoadiscussionoftheloermvariationofparyorbitsusingalow-passfilterandincludesadiscussionofangurmentumdeficit.Iion5,wepresentasetofnumericaliionsfortheouterfivephatspans±5×1010yr.Iion6wealsodiscussthelong-termstabilityoftheparymotionanditspossiblecause.

2Descriptionofthenumericaliions

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2.3Numericalmethod

Weutilizeased-orderWisd–Holmansymplecticmapasourmainiiohod(Wisd&Holman1991;Kinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994).

Thestepsizeforthenumericaliionsis8dthroughoutalliionsofthenineps(N±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermostp(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericaliionofallninepsinSussman&Wisd(1988,7.2d)andSaha&Tremaine(1994,225/32d).Werouhedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumutionofround-offerrorinthecputationprocesses.Iiontothis,Wisd&Holman(1991)performednumericaliionsoftheouterfiveparyorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofJupiter.Theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.However,siheetricityofJupiter(~0.05)ismuchsmallerthanthatofMercury(~0.2),weneedsecarewhenwecparetheseiionssimplyintermsofstepsizes.

Iegrationoftheouterfiveps(F±),wefixedthestepsizeat400d.

tGauss'fandgfunsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations.ThenumberofmaximumiteratioinHalley'smethodis15,buttheyneverreachedthemaximuminanyofouriions.

Theintervalofthedataoutputis200000d(~547yr)forthecalcutionsofallnineps(N±1,2,3),andabout8000000d(~21903yr)fortheiionoftheouterfiveps(F±).

Althoughnooutputfilteringwasdonewhenthenumericaliionswereinprocess,liedalow-passfiltertotheraworbitaldataafterletedallthecalcutions.SeeSe4.1formoredetail.

2.4Errorestimation

2.4.1Retiveerrorsintotalenergyandangurmentum

Acctooneofthebasicpropertiesofsymplectitegrators,whichservethephysicallyservativequantitieswell(totalorbitalenergyandangurmentum),ourlong-termnumericaliioohavebeenperformedwithverysmallerrors.Theaveragedretiveerrorsoftotalenergy(~10?9)andoftotalangurmentum(~10?11)haveremainednearlystantthroughouttheiionperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedretiveerrorintotalenergybyaboutoneorderofmagnitudeormore.

RetivenumericalerrorofthetotalangurmentumδA/A0andthetotalenergyδE/E0inournumericaliionsN±1,2,3,whereδEandδAaretheabsolutegeofthetotalenergyandtotalangurmentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr.

hatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wereizethissituationintheseumericalerrorialangurmentum,whichshouldberigorouslypreserveduptomae-εprecision.

2.4.2Erroriarylongitudes

SihesymplecticmapspreservetotalenergyandtotalangurmentumofN-bodydynamicalsystemsilywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericaliions,especiallyasameasureofthepositionalerrorofps,i.e.theerroriarylongitudes.Toestimatethenumericalerrorintheparylongitudes,weperformedthefollowingprocedures.Wecparedtheresultofourmainlong-termiionswithsetestiions,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainiions.Forthispurpose,weperformedamuchmoreaccurateiionwithastepsizeof0.125d(1/64ofthemainiions)spanning3×105yr,startingwiththesameinitialditionsasintheN?1iion.Wesiderthatthistestiionprovidesuswitha‘pseudo-true’solutionofparyorbitalevolutio,wecparethetestiionwiththemainiion,N?1.Fortheperiodof3×105yr,weseeadifferenmeananaliesoftheEarthbetweewoiionsof~0.52°(inthecaseoftheN?1iion).Thisdifferencebeextrapotedtothevalue~8700°,about25rotationsofEarthafter5Gyr,siheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.Simirly,thelongitudeerrorofPlutobeestimatedas~12°.ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas~60°.

3Numericalresults–I.Gtherawdata

Inthissewebrieflyreviewthelong-termstabilityofparyorbitalmotionthroughsesnapshotsofrawnumericaldata.Theorbitalmotionofpsindicateslong-termstabilityinallofournumericaliions:noorbitalcrossingsnorcloseentersbetweenanypairofpookpce.

3.1Generaldescriptionofthestabilityofparyorbits

First,webrieflylookatthegeneralcharacterofthelong-termstabilityofparyorbits.Ouriherefocusesparticurlyontheinnerfourterrestrialpsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveps.AsweseeclearlyfrthepnarorbitalfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialpsdifferlittlebetweentheinitialandfinalpartofeaumericaliion,whichspansseveralGyr.Thesolidlinesdenotingthepresentorbitsofthepsliealmostwithintheswarmofdotseveninthefinalpartofiions(b)and(d).Thisindicatesthatthroughouttheeegrationperiodthealmurvariationsofparyorbitalmotionremainnearlythesameastheyareatpresent.

Verticalviewofthefourinnerparyorbits(frthez-axisdire)attheinitialandfinalpartsoftheiionsN±1.Theaxesunitsareau.Thexy-pneissettotheinvariantpneofSorsystemtotalangurmentum.(a)TheinitialpartofN+1(t=0to0.0547×109yr).(b)ThefinalpartofN+1(t=4.9339×108to4.9886×109yr).(c)TheinitialpartofN?1(t=0to?0.0547×109yr).(d)ThefinalpartofN?1(t=?3.9180×109to?3.9727×109yr).Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47×107yr.Solidlinesineachpaneldehepresentorbitsofthefourterrestrialps(takenfrDE245).

ThevariationofetricitiesandorbitalinationsfortheinnerfourpsintheinitialandfinalpartoftheiionN+1isshowninFig.4.Asexpected,thecharacterofthevariationofparyorbitalelementsdoesnotdiffersignifitlybetweentheinitialandfinalpartofeategration,atleastforVenus,EarthandMars.TheelementsofMercury,especiallyitsetricity,seemtogetoasignifitextent.Thisispartlybecausetheorbitaltime-scaleofthepistheshortestofalltheps,whichleadstoamorerapidorbitalevolutionthanotherps;theinnermostpmaybeoinstability.ThisresultappearstobeinseagreementwithLaskar's(1994,1996)expectationsthatrgeandirregurvariationsappearintheetricitiesandinationsofMercuryonatime-scaleofseveral109yr.However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeparysystemowingtothesmallmassofMercury.Wewillmentionbrieflythelong-termorbitalevolutionofMercuryteriion4usinglow-passfilteredorbitalelements.

Theorbitalmotionoftheouterfivepsseemsrigorouslystableandquitereguroverthistime-span(seealsoSe5).

3.2Time–frequencymaps

Althoughtheparymotionexhibitsverylong-termstabilitydefinedastheenceofcloseenterevents,thechaotiatureofparydynamicsgetheosciltoryperiodandamplitudeofparyorbitalmotiongraduallyoversuchlongtime-spans.Evensuchslightfluctuationsoforbitalvariationinthefrequencydain,particurlyinthecaseofEarth,potentiallyhaveasignifiteffeitssurfaceclimatesystemthroughsorinsotionvariation(cf.Berger1988).

Togiveanoverviewofthelong-termgeinperiodicityiaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar's(1990,1993)frequenalysis.

Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength.Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT.

Eachfragmentofthedatahasargeoverppingpart:forexample,whehdatabeginsfrt=tiandendsatt=ti+T,thedatasegmentrangesfrti+δT≤ti+δT+T,whereδT?T.WetihisdivisionuntilwereachacertainnumberNbywhi+Treachesthetotaliioh.

lyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams.

Ineachfrequencydiagramobtainedabove,thestrengthofperiodicityberepcedbyagrey-scale(orcolour)chart.

Weperformtherept,andectallthegrey-scale(orcolour)chartsintoonegraphforeategration.Thehorizontalaxisofthesenehsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheosciltionoforbitalelements.

WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,siheamountofnumericaldatatobedecposedintofrequencyentsisterriblyhuge(severaltensofGbytes).

Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig.5,whichshowsthevariationofperiodicityintheetricityandinationofEarthinN+2iion.InFig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrohaninthelighterareaaroundit.WereizefrthismapthattheperiodicityoftheetricityandinationofEarthonlygesslightlyovertheentireperiodcoveredbytheN+2iion.Thisnearlyregurtrendisqualitativelythesameinotheriionsandforotherps,althoughtypicalfrequenciesdifferpbypandelementbyelement.

4.2Long-termexgeoforbitalenergyandangurmentum

Wecalcuteverylong-periodicvariationandexgeofparyorbitalenergyandangurmentumusingfilteredDeunayelementsL,G,H.GandHareequivalenttotheparyorbitalangurmentumanditsverticalentperunitmass.LisretedtotheparyorbitalenergyEperunitmassasE=?μ2/2L2.Ifthesystemiscpletelylinear,theorbitalenergyandtheangurmentumineachfrequencybinmustbestant.Non-liyintheparysystemcauseanexgeofenergyandangurmentuminthefrequencydain.Theamplitudeofthelowest-frequencyosciltionshouldincreaseifthesystemisunstableandbreaksdowngradually.However,suchasymptofinstabilityisnotpriinourlong-termiions.

InFig.7,thetotalorbitalenergyandangurmentumofthefourinnerpsandallninepsareshownforiionN+2.Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangurmentum(G-G0),andtheverticalent(H-H0)oftheinnerfourpscalcutedfrthelow-passfilteredDeunayelements.E0,G0,H0deheinitialvaluesofeachquantity.Theabsolutedifferencefrtheinitialvaluesisplottedinthepanels.ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofthetotalofnineps.Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovias.

Cparingthevariationsofenergyandangurmentumoftheinnerfourpsandallnineps,itisapparentthattheamplitudesofthoseoftheinnerpsaremuchsmallerthanthoseofallnineps:theamplitudesoftheouterfivepsaremuchrgerthanthoseoftheinnerps.Thisdoesnotmeanthattheierrestrialparysubsystemismorestablethaerohisissimplyaresultoftheretivesmallnessofthemassesofthefourterrestrialpscparedwiththoseoftheouterjovias.Ahiiceisthattheinnerparysubsystemmaybestablemorerapidlythaeronebecauseofitsshorterorbitaltime-scales.Thisbeseeninthepanelsdenotedasinner4inFig.7wherethelonger-periodidirregurosciltionsaremoreapparentthaninthepanelsdenotedastotal9.Actually,thefluctuationsintheinner4panelsareteextentasaresultoftheorbitalvariationoftheMercury.However,weothetributionfrotherterrestrialps,aswewillseeinsubsequeions.

4.4Long-termcouplingofseveralneighbppairs

Letusseeseindividualvariationsofparyorbitalenergyandangurmentumexpressedbythelow-passfilteredDeunayelements.Figs10and11showlong-termevolutionoftheorbitalenergyofeaetandtheangurmentuminN+1andN?2iions.Wenoticethatsepsformapparentpairsintermsoforbitalenergyandangurmentumexge.Inparticur,Venusahmakeatypicalpair.Inthefigures,theyshowivecorretionsinexgeofenergyandpositivecorretionsinexgeofangurmentum.Theivecorretioninexgeoforbitalenergymeansthatthetwopsformacloseddynamicalsystemintermsoftheorbitalenergy.Thepositivecorretioninexgeofangurmentummeansthatthetwopsaresimultaneouslyundercertainlong-termperturbations.didatesforperturbersareJupiterandSaturn.AlsoinFig.11,weseethatMarsshoositivecorretionintheangurmentumvariationtotheVehsystem.MercuryexhibitscertaiivecorretionsintheangurmentumversustheVehsystem,whichseemstobeareacausedbytheservationofangurmentumierrestrialparysubsystem.

ItisnotclearatthementwhytheVehpairexhibitsaivecorretioninenergyexgeandapositivecorretioninangurmentumexge.ossiblyexpinthisthroughthegeneralfactthattherearenosecurtermsiarysemimajoraxesuptosed-orderperturbationtheories(cf.Brouwer&Clemence1961;Boccaletti&Pucacco1998).Thismeansthattheparyorbitalenergy(whichisdirectlyretedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingphanistheangurmentumexge(whichretestoe).HeheetricitiesofVenusahbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorretionintheangurmentumexge.Oherhand,thesemimajoraxesofVenusaharelesslikelytobedisturbedbythejovias.ThustheenergyexgemaybelimitedonlywithintheVehpair,whichresultsinaivecorretionintheexgeoforbitalenergyinthepair.

Asfortheouterjoviaarysubsystem,Jupiter–SaturnandUranus–uomakedynamicalpairs.However,thestrengthoftheircouplingisnotasstrongcparedwiththatoftheVehpair.

5±5×1010-yriionsofouterparyorbits

Sihejoviaarymassesaremuchrgerthaerrestrialparymasses,wetreatthejoviaarysystemasanindepeparysystemintermsofthestudyofitsdynamicalstability.Hence,weaddedacoupleoftrialiionsthatspan±5×1010yr,includingonlytheouterfiveps(thefourjoviasplusPluto).Theresultsexhibittherigorousstabilityoftheouterparysystemoverthislongtime-span.Orbitalfigurations(Fig.12),andvariationofetricitiesandinations(Fig.13)showthisverylong-termstabilityoftheouterfivepsinboththetimeandthefrequencydains.Althoughwedonotshoshere,thetypicalfrequencyoftheorbitalosciltionofPlutoandtheotherouterpsisalmoststantduringtheseverylong-termiionperiods,whichisdemonstratediime–frequencymapsonourwebpage.

Iwoiions,theretivenumericalerrorialenergywas~10?6andthatofthetotalangurmentumwas~10?10.

5.1Resonancesintheune–Plutosystem

Kinoshita&Nakai(1996)iedtheouterfiveparyorbitsover±5.5×109yr.TheyfoundthatfourmajorresonancesbetweeuneandPlutoaremaintainedduringthewholeiionperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto.Themajorfourresonancesfoundinpreviousresearchareasfollows.Inthefollowingdescription,λdehemeanlongitude,Ωisthelongitudeoftheasdingnodeand?isthelongitudeofperihelion.SubscriptsPandePlutoaune.

MeanmotionresoweeuneandPluto(3:2).Thecriticalargumentθ1=3λP?2λN??Plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr.

TheargumentofperihelionofPlutoωP=θ2=?P?ΩPlibratesaround90°withaperiodofabout3.8×106yr.ThedinantperiodicvariationsoftheetricityandinationofPlutoaresynizedwiththelibrationofitsargumentofperihelion.ThisisanticipatedinthesecurperturbationtheorystructedbyKozai(1962).

ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofune,θ3=ΩP?ΩN,circutesandtheperiodofthiscircutionisequaltotheperiodofθ2libration.Whenθ3beceszero,i.e.thelongitudesofasdingnodesofuneandPlutooverp,theinationofPlutobecesmaximum,theetricitybecesminimumandtheargumentofperihelionbeces90°.Whenθ3beces180°,theinationofPlutobecesminimum,theetricitybecesmaximumandtheargumentofperihelionbeces90°again.Williams&Benson(1971)anticipatedthistypeofresoerfirmedbyMini,Nobili&Carpino(1989).

Anargumentθ4=?P??N+3(ΩP?ΩN)libratesaround180°withalongperiod,~5.7×108yr.

Inournumericaliions,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimirduringthewholeiionperiod(Figs14–16).However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcircutionovera1010-yrtime-scale(Fig.17).ThisisaniingfactthatKinoshita&Nakai's(1995,1996)shorteriionswerenotabletodisclose.

6Discussion

Whatkindofdynamicalmeismmaintainsthislong-termstabilityoftheparysystem?Weimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.First,thereseemtobenosignifitlower-orderresonances(meanmotionandsecur)betweenanypairamongthenineps.JupiterandSaturnareclosetoa5:2meanmotionresohefamous‘greatinequality’),butnotjustintheresonancezone.Higher-orderresonancesmaycausethechaotiatureoftheparydynamicalmotion,buttheyarenotsastodestroythestableparymotionwithinthelifetimeoftherealSorsystem.Thesedfeature,whichwethinkismoreimportantforthelong-termstabilityofourparysystem,isthedifferendynamicaldistaweenterrestrialandjoviaarysubsystems(Ito&Tanikawa1999,2001).WhenwemeasureparyseparationsbythemutualHillradii(R_),separationsamongterrestrialpsaregreaterthan26RH,whereasthoseamongjoviasarelessthan14RH.Thisdifferenceisdirectlyretedtothediffereweendynamicalfeaturesofterrestrialandjovias.Terrestrialpshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.Theyarestronglyperturbedbyjoviahathavergermasses,longerorbitalperiodsandnarrowerdynamicalseparation.Joviasarenotperturbedbyanyothermassivebodies.

Thepresentterrestrialparysystemisstillbeingdisturbedbythemassivejovias.However,thewideseparationandmutualiionamongtheterrestrialpsrehedisturbaneffective;thedegreeofdisturbancebyjoviasisO(eJ)(orderofmagnitudeoftheetricityofJupiter),sihedisturbancecausedbyjoviasisaforcedosciltionhavinganamplitudeofO(eJ).Heighteningofetricity,forexampleO(eJ)~0.05,isfarfrsuffittoprovokeinstabilityierrestrialpshavingsuchawideseparationas26RH.Thusweassumethatthepresentwidedynamicalseparationamongterrestrialps(>26RH)isprobablyoneofthemostsignifitditionsformaintainingthestabilityoftheparysystemovera109-yrtime-span.Ourdetailedanalysisoftheretionshipbetweendynamicaldistaweesandtheinstabilitytime-scaleofSorsystemparymotionisnowon-going.

AlthoughournumericaliionsspanthelifetimeoftheSorsystem,thenumberofiionsisfarfrsuffittofilltheinitialphasespace.Itisnecessarytoperformmoreandmorenumericaliionstofirmandexamineiailthelong-termstabilityofourparydynamics.

——以上文段引自Ito,T.&Tanikawa,K.Long-termiionsandstabilityofparyorbitsinourSorSystem.Mon.Not.R.Astron.Soc.336,483–500(2002)

这只是作者君参考的一篇文章,关于太阳系的稳定性。

还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。